Universit at Dortmund Fachbereich Informatik Lehrstuhl Viii K Unstliche Intelligenz Text Categorization with Support Vector Machines: Learning with Many Relevant Features Text Categorization with Support Vector Machines: Learning with Many Relevant Features

نویسنده

  • Thorsten Joachims
چکیده

This paper explores the use of Support Vector Machines (SVMs) for learning text classiers from examples. It analyzes the particular properties of learning with text data and identi es, why SVMs are appropriate for this task. Empirical results support the theoretical ndings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety of di erent learning tasks. Furthermore, they are fully automatic, eliminating the need for manual parameter tuning. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Categorization with Support Vector Machines: Learning with Many Relevant F Eatures Text Categorization with Support Vector Machines: Learning with Many Relevant F Eatures

This paper explores the use of Support Vector Machines (SVMs) for learning text classiers from examples. It analyzes the particular properties of learning with text data and identi es, why SVMs are appropriate for this task. Empirical results support the theoretical ndings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety o...

متن کامل

Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA

With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...

متن کامل

Text Categorization with Support Vector Machines: Learning with Many Relevant Features

This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies why SVMs arc appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substantial improvements over the currently best performing methods and behave robustly over a variety of...

متن کامل

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

Universit at Dortmund Fachbereich Informatik Lehrstuhl Viii K Unstliche Intelligenz Data Preparation for Inductive Learning in Robotics Anke Rieger Data Preparation for Inductive Learning in Robotics Anke Rieger

The application of logic-based learning algorithms in real-world domains, such as robotics, requires extensive data engineering, including the transformation of numerical tabular representations of real-world data to logic-based representations, feature and concept selection, the generation of the respective descriptions, and the composition of training and test sets, which meet the requirement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998